

Merrimack Station AR-1164 EPA 841-B-99-002

Periphyton, Benthic Macroinvertebrates, and Fish Second Edition

http://www.epa.gov/OWOW/monitoring/techmon.html

By:

Michael T. Barbour Jeroen Gerritsen Blaine D. Snyder James B. Stribling **Project Officer:**

Chris Faulkner Office of Water USEPA 401 M Street, NW

Washington, DC 20460

NOTICE

This document has been reviewed and approved in accordance with U.S. Environmental Protection Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Appropriate Citation:

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.

This entire document, including data forms and other appendices, can be downloaded from the website of the USEPA Office of Wetlands, Oceans, and Watersheds:

http://www.epa.gov/OWOW/monitoring/techmon.html

Parameters to be evaluated in sampling reach:

1

EPIFAUNAL SUBSTRATE/AVAILABLE COVER

high and low Includes the relative quantity and variety of natural structures in the gradient streams stream, such as cobble (riffles), large rocks, fallen trees, logs and branches, and undercut banks, available as refugia, feeding, or sites for spawning and nursery functions of aquatic macrofauna. A wide variety and/or abundance of submerged structures in the stream provides macroinvertebrates and fish with a large number of niches, thus increasing habitat diversity. As variety and abundance of cover decreases, habitat structure becomes monotonous, diversity decreases, and the potential for recovery following disturbance decreases. Riffles and runs are critical for maintaining a variety and abundance of insects in most high-gradient streams and serving as spawning and feeding refugia for certain fish. The extent and quality of the riffle is an important factor in the support of a healthy biological condition in high-gradient streams. Riffles and runs offer a diversity of habitat through variety of particle size, and, in many small high-gradient streams, will provide the most stable habitat. Snags and submerged logs are among the most productive habitat structure for macroinvertebrate colonization and fish refugia in low-gradient streams. However, "new fall" will not yet be suitable for colonization.

Selected Wesche et al. 1985, Pearsons et al. 1992, Gorman 1988, Rankin 1991,
References Barbour and Stribling 1991, Plafkin et al. 1989, Platts et al. 1983,
Osborne et al. 1991, Benke et al. 1984, Wallace et al. 1996, Ball 1982,
MacDonald et al. 1991, Reice 1980, Clements 1987, Hawkins et al. 1982,
Beechie and Sibley 1997.

Habitat								Con	dition	Categ	ory									
Parameter		Optim	al			Su	boptiı	nal			Ma	nrgin	al				Po	or		
1. Epifaunal Substrate/ Available Cover	for low of subst epifaun fish cov	rate favo al colon	t stream orable ization of sna	ms) for and gs,	gradi stabl for fr poter	0% (3 ient st e habi ull col ntial; a nainte	reams itat; w loniza adequ) mix ell-su tion ate ha	of ited	20-40 gradie stable availa desira freque	ent str habit bility ble; s	eams at; ha less ubstra) mix abitat than ate	of	low stab habi	s than gradi le hal tat is strate ing.	ient s bitat; obvi	streau lack ious;	ms) c of	or
(high and low gradient)	,	l (i.e., lo <u>not</u> new	nd at s onizat ogs/sna	tage ion ags	addit form yet p color	ilation tional of ne prepare nizatio end o	substr wfall, ed for on (ma	rate in but n ay rate	the	remov	ved.									
SCORE	20 1	9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Epifaunal Substrate/Available Cover—High Gradient 1a.

Poor Range

Optimal Range

1b. Epifaunal Substrate/Available Cover—Low Gradient

Optimal Range

(Mary Kay Corazalla, U. of Minn.) Poor Range

EMBEDDEDNESS

2**a**

high gradient streams Refers to the extent to which rocks (gravel, cobble, and boulders) and snags are covered or sunken into the silt, sand, or mud of the stream bottom. Generally, as rocks become embedded, the surface area available to macroinvertebrates and fish (shelter, spawning, and egg incubation) is decreased. Embeddedness is a result of large-scale sediment movement and deposition, and is a parameter evaluated in the riffles and runs of highgradient streams. The rating of this parameter may be variable depending on where the observations are taken. To avoid confusion with sediment deposition (another habitat parameter), observations of embeddedness should be taken in the upstream and central portions of riffles and cobble substrate areas.

SelectedBall 1982, Osborne et al. 1991, Barbour and Stribling 1991, Platts et al.References1983, MacDonald et al. 1991, Rankin 1991, Reice 1980, Clements 1987,
Benke et al. 1984, Hawkins et al. 1982, Burton and Harvey 1990.

Habitat									Con	ditior	Categ	ory									
Parameter		0	ptima	ıl			Su	bopti	mal			Ma	argin	al				Po	or		
2.a Embeddedness (high gradient)	Gravel boulde 25% su sedime cobble niche s	er part urrout ent. L prov	ticles nded ayeri ides c	are 0 by fir ng of	ne	bould 50% sedin	ler pa surro	bble, a rticles unded	are 2		Gravel boulde 75% st sedime	r part urrou	icles	are 5		Grav bould than fine s	der p 75%	artic surr	les a ounc	re m	
SCORE	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

2a. Embeddedness—High Gradient

(William Taft, MI DNR)

Poor Range

(William Taft, MI DNR)

2b POOL SUBSTRATE CHARACTERIZATION

low gradient streams

Evaluates the type and condition of bottom substrates found in pools. Firmer sediment types (e.g., gravel, sand) and rooted aquatic plants support a wider variety of organisms than a pool substrate dominated by mud or bedrock and no plants. In addition, a stream that has a uniform substrate in its pools will support far fewer types of organisms than a stream that has a variety of substrate types.

Selected Beschta and Platts 1986, U.S. EPA 1983. *References*

Habitat		Condition	Category	
Parameter	Optimal	Suboptimal	Marginal	Poor
2b. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or submerged vegetation.
(low gradient)	vegetation common.	present.		
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

2b. Pool Substrate Characterization—Low Gradient

Optimal Range (Mary Kay Corazalla, U. of Minn.)

Poor Range

VELOCITY/DEPTH COMBINATIONS

high gradient Patterns of velocity and depth are included for high-gradient streams under this parameter as an important feature of habitat diversity. The best streams streams in most high-gradient regions will have all 4 patterns present: (1) slow-deep, (2) slow-shallow, (3) fast-deep, and (4) fast-shallow. The general guidelines are 0.5 m depth to separate shallow from deep, and 0.3 m/sec to separate fast from slow. The occurrence of these 4 patterns relates to the stream's ability to provide and maintain a stable aquatic environment.

Selected Ball 1982, Brown and Brussock 1991, Gore and Judy 1981, Oswood and References Barber 1982.

Habitat									Cone	lition	Categ	ory									
Parameter		0	ptim	al			Su	bopti	mal			Ma	argin	al				Po	or		
Regimes	All 4 regim slow- fast-s (slow >0.5	nes pre shallo hallov is <0	esent (w, fas v).	slow-	р,		nt (if : ng, sc	fast-sł	nallow wer th	' is nan if	Only 2 regime shallov are mi	es pre w or s	sent (if fas shallo	t- w	Dom dept slow	h reg	ime			ity/
SCORE	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

3a. Velocity/Depth Regimes—High Gradient

3a

Optimal Range (Mary Kay Corazalla, U. of Minn.) Poor Range (arrows emphasize different velocity/depth regimes)

(William Taft, MI DNR)

3b POOL VARIABILITY

low gradient streams Rates the overall mixture of pool types found in streams, according to size and depth. The 4 basic types of pools are large-shallow, large-deep, smallshallow, and small-deep. A stream with many pool types will support a wide variety of aquatic species. Rivers with low sinuosity (few bends) and monotonous pool characteristics do not have sufficient quantities and types of habitat to support a diverse aquatic community. General guidelines are any pool dimension (i.e., length, width, oblique) greater than half the crosssection of the stream for separating large from small and 1 m depth separating shallow and deep.

Selected Beschta and Platts 1986, USEPA 1983. *References*

Habitat		Conditio	n Category	
Parameter	Optimal	Suboptimal	Marginal	Poor
3b. Pool Variability	Even mix of large- shallow, large-deep, small- shallow, small-deep pools present.		Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
(low gradient) SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

3b. Pool Variability—Low Gradient

Optimal Range

(Peggy Morgan, FL DEP) Poor Range

(William Taft, MI DNR)

4 SEDIMENT DEPOSITION

high and low gradient streams

Measures the amount of sediment that has accumulated in pools and the changes that have occurred to the stream bottom as a result of deposition. Deposition occurs from large-scale movement of sediment. Sediment deposition may cause the formation of islands, point bars (areas of increased deposition usually at the beginning of a meander that increase in size as the channel is diverted toward the outer bank) or shoals, or result in the filling of runs and pools. Usually deposition is evident in areas that are obstructed by natural or manmade debris and areas where the stream flow decreases, such as bends. High levels of sediment deposition are symptoms of an unstable and continually changing environment that becomes unsuitable for many organisms.

SelectedMacDonald et al. 1991, Platts et al. 1983, Ball 1982, Armour et al. 1991,ReferencesBarbour and Stribling 1991, Rosgen 1985.

Habitat		Condition	1 Category	
Parameter	Optimal	Suboptimal	Marginal	Poor
4. Sediment Deposition (high and low gradient)	Little or no enlargement of islands or point bars and less than 5% (<20% for low-gradient streams) of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% (20-50% for low- gradient) of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% (50-80% for low-gradient) of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% (80% for low- gradient) of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

4a. Sediment Deposition—High Gradient

Optimal Range

Poor Range (arrow pointing to sediment deposition)

Optimal Range

4b. Sediment Deposition—Low Gradient

Poor Range (arrows pointing to sediment deposition)

5 CHANNEL FLOW STATUS

high and low gradient streams The degree to which the channel is filled with water. The flow status will change as the channel enlarges (e.g., aggrading stream beds with actively widening channels) or as flow decreases as a result of dams and other obstructions, diversions for irrigation, or drought. When water does not cover much of the streambed, the amount of suitable substrate for aquatic organisms is limited. In high-gradient streams, riffles and cobble substrate are exposed; in low-gradient streams, the decrease in water level exposes logs and snags, thereby reducing the areas of good habitat. Channel flow is especially useful for interpreting biological condition under abnormal or lowered flow conditions. This parameter becomes important when more than one biological index period is used for surveys or the timing of sampling is inconsistent among sites or annual periodicity.

Selected Rankin 1991, Rosgen 1985, Hupp and Simon 1986, MacDonald et al. *References* 1991, Ball 1982, Hicks et al. 1991.

Habitat									Con	dition	Categ	ory									
Parameter		0	ptim	al			Su	bopti	mal			Ma	argin	al				Po	or		
5. Channel Flow Status	lowe amor	er reac r banl unt of trate is	chanr	d mini nel	both mal	avail <25%	able o	s >759 channe channe	el; or		Water availa riffle s expos	ble ch substr	nanne	el, and	l/or	Very chan prese	nel a	and n	nostl	y	ols.
(high and low gradient)											-										
SCORE	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Optimal Range

Poor Range (arrow showing that water is not reaching both banks; leaving much of channel uncovered)

5b. Channel Flow Status—Low Gradient

Optimal Range

Poor Range

(James Stahl, IN DEM)

Parameters to be evaluated broader than sampling reach:

6 CHANNEL ALTERATION

high and low
Is a measure of large-scale changes in the shape of the stream channel.
Many streams
Many streams in urban and agricultural areas have been straightened, deepened, or diverted into concrete channels, often for flood control or irrigation purposes. Such streams have far fewer natural habitats for fish, macroinvertebrates, and plants than do naturally meandering streams.
Channel alteration is present when artificial embankments, riprap, and other forms of artificial bank stabilization or structures are present; when the stream is very straight for significant distances; when dams and bridges are present; and when other such changes have occurred. Scouring is often associated with channel alteration.

SelectedBarbour and Stribling 1991, Simon 1989a, b, Simon and Hupp 1987,ReferencesHupp and Simon 1986, Hupp 1992, Rosgen 1985, Rankin 1991,
MacDonald et al. 1991.

Habitat							Con	dition	Categ	ory									
Parameter	Ор	otimal			Sul	ooptii	nal			Ma	argin	al				Po	or		
6. Channel Alteration	Channelizat dredging ab minimal; str normal patte	sent or ream with		prese bridg	e char ent, us ge abu ence o	ually tment	in are s;	as of	Chann extens or sho preser	sive; e ring s	embai struct	nkmei ures	nts	or co the s	emen strear	it; ov n rea	with er 80 Ich nd di	% 0	f
(high and low gradient)				dredg past 2 prese	neliza ging, (20 yr) ent, bu neliza ent.	great may it rece	er tha be nt	n	40 to 8 channe						ed or		itat g loved		y
SCORE	20 19	18 17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

6a. Channel Alteration—High Gradient

Optimal Range

Poor Range (arrows emphasizing large-scale channel alterations)

6b. Channel Alteration—Low Gradient

Optimal Range

Poor Range

(John Maxted, DE DNREC)

7a FREQUENCY OF RIFFLES (OR BENDS)

high gradient streams

Is a way to measure the sequence of riffles and thus the heterogeneity occurring in a stream. Riffles are a source of high-quality habitat and diverse fauna, therefore, an increased frequency of occurrence greatly enhances the diversity of the stream community. For high gradient streams where distinct riffles are uncommon, a run/bend ratio can be used as a measure of meandering or sinuosity (see 7b). A high degree of sinuosity provides for diverse habitat and fauna, and the stream is better able to handle surges when the stream fluctuates as a result of storms. The absorption of this energy by bends protects the stream from excessive erosion and flooding and provides refugia for benthic invertebrates and fish during storm events. To gain an appreciation of this parameter in some streams, a longer segment or reach than that designated for sampling should be incorporated into the evaluation. In some situations, this parameter may be rated from viewing accurate topographical maps. The "sequencing" pattern of the stream morphology is important in rating this parameter. In headwaters, riffles are usually continuous and the presence of cascades or boulders provides a form of sinuosity and enhances the structure of the stream. A stable channel is one that does not exhibit progressive changes in slope, shape, or dimensions, although short-term variations may occur during floods (Gordon et al. 1992).

SelectedHupp and Simon 1991, Brussock and Brown 1991, Platts et al. 1983,ReferencesRankin 1991, Rosgen 1985, 1994, 1996, Osborne and Hendricks 1983,
Hughes and Omernik 1983, Cushman 1985, Bain and Boltz 1989,
Gislason 1985, Hawkins et al. 1982, Statzner et al. 1988.

Habitat									Con	dition	Categ	ory									
Parameter		0	ptim	al			Su	bopti	mal			Ma	argin	al				Po	or		
7a. Frequency of Riffles (or bends) (high gradient)	relati of divid strea to 7) key. riffle place other	stance led by m <7: ; varie In str s are o ement r large	freque betw width 1 (gen ety of reams contin of bo e, natu	ent; rate een rit n of th nerally habita where uous, ulders ral	ffles e y 5 tt is e or	infre betw the v	quent een ri vidth (e of ri ; dista ffles c of the to 15	nce livideo strean	-	Occas bottor some betwe the wi betwe	n con habita en rif dth o	tours at; dis fles d f the s	provistance ividec stream	de I by	shal habi riffle widt	low i itat; c es div	riffle: listar vided the s	s; po ice b l by t	etwee	
	obstr	uctioi	1 1S 1II	iporta	nt.																_
SCORE	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

7a. Frequency of Riffles (or bends)—High Gradient

Poor Range

Optimal Range (arrows showing frequency of riffles and bends)

7b

streams

low gradient

0

CHANNEL SINUOSITY

Evaluates the meandering or sinuosity of the stream. A high degree of sinuosity provides for diverse habitat and fauna, and the stream is better able to handle surges when the stream fluctuates as a result of storms. The absorption of this energy by bends protects the stream from excessive erosion and flooding and provides refugia for benthic invertebrates and fish during storm events. To gain an appreciation of this parameter in low gradient streams, a longer segment or reach than that designated for sampling may be incorporated into the evaluation. In some situations, this parameter may be rated from viewing accurate topographical maps. The "sequencing" pattern of the stream morphology is important in rating this parameter. In "oxbow" streams of coastal areas and deltas, meanders are highly exaggerated and transient. Natural conditions in these streams are shifting channels and bends, and alteration is usually in the form of flow regulation and diversion. A stable channel is one that does not exhibit progressive changes in slope, shape, or dimensions, although short-term variations may occur during floods (Gordon et al. 1992).

SelectedHupp and Simon 1991, Brussock and Brown 1991, Platts et al. 1983,ReferencesRankin 1991, Rosgen 1985, 1994, 1996, Osborne and Hendricks 1983,
Hughes and Omernik 1983, Cushman 1985, Bain and Boltz 1989,
Gislason 1985, Hawkins et al. 1982, Statzner et al. 1988.

Habitat								Con	ditior	n Categ	gory									
Parameter		Optima	1			Su	bopti	mal			M	argin	al				Po	or		
7b. Channel Sinuosity	The bend increase t	he strea	m leng	th	incre	ase th	ne stre	e strea eam le	ngth	The b increa	se the	e strea	am len	gth	Char wate char	rway	has	beer		
(low gradient)	3 to 4 tim it was in (Note - cl considered coastal pl low-lying paramete	a straigh hannel b ed norma lains ano g areas.	nt line. oraiding al in 1 other This					ger tha ght lin		1 to 2 it was					dista		ed fo	or a i	ong	
SCORE	rated in the rated	hese are	as.) 17 1	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

7b. Channel Sinuosity—Low Gradient

Optimal Range

Poor Range

BANK STABILITY (condition of banks)

high and low gradient streams

8

Measures whether the stream banks are eroded (or have the potential for erosion). Steep banks are more likely to collapse and suffer from erosion than are gently sloping banks, and are therefore considered to be unstable. Signs of erosion include crumbling, unvegetated banks, exposed tree roots, and exposed soil. Eroded banks indicate a problem of sediment movement and deposition, and suggest a scarcity of cover and organic input to streams. Each bank is evaluated separately and the cumulative score (right and left) is used for this parameter.

Selected References

Ball 1982, MacDonald et al. 1991, Armour et al. 1991, Barbour and Stribling 1991, Hupp and Simon 1986, 1991, Simon 1989a, Hupp 1992, Hicks et al. 1991, Osborne et al. 1991, Rosgen 1994, 1996.

Habitat				(Condition	Category	r				
Parameter	Optima	al	Su	ıboptim	al	Ν	/largina	ıl		Poor	
8. Bank Stability (score each bank)	Banks stable; ev erosion or bank absent or minim potential for futu	failure al; little ure	Moderate infrequen erosion m over. 5-3	t, small nostly he 60% of b	areas of aled ank in	Moderate 60% of b areas of e erosion p	ank in re rosion; l	each has high	Unstable; areas; "ra frequent a sections a	w" areas along str and bend	s raight ls;
Note: determine	problems. <5% of	of bank	reach has	areas of	erosion.	floods.			obvious b		0 0,
left or right side by	affected.								60-100%		has
facing downstream									erosional	scars.	
(high and low gradient)											
SCORE (LB)	Left Bank	10 9	8	7	6	5	4	3	2	1	0
SCORE (RB)	Right Bank	10 9	8	7	6	5	4	3	2	1	0

8a. Bank Stability (condition of banks)—High Gradient

Optimal Range (arrow pointing to stable streambanks)

Poor Range (MD Save Our Streams) (arrow highlighting unstable streambanks)

8b. Bank Stability (condition of banks)—Low Gradient

Optimal Range

(Peggy Morgan, FL DEP)

Poor Range (arrow highlighting unstable streambanks)

BANK VEGETATIVE PROTECTION

high and low gradient streams

9

Measures the amount of vegetative protection afforded to the stream bank and the near-stream portion of the riparian zone. The root systems of plants growing on stream banks help hold soil in place, thereby reducing the amount of erosion that is likely to occur. This parameter supplies information on the ability of the bank to resist erosion as well as some additional information on the uptake of nutrients by the plants, the control of instream scouring, and stream shading. Banks that have full, natural plant growth are better for fish and macroinvertebrates than are banks without vegetative protection or those shored up with concrete or riprap. This parameter is made more effective by defining the native vegetation for the region and stream type (i.e., shrubs, trees, etc.). In some regions, the introduction of exotics has virtually replaced all native vegetation. The value of exotic vegetation to the quality of the habitat structure and contribution to the stream ecosystem must be considered in this parameter. In areas of high grazing pressure from livestock or where residential and urban development activities disrupt the riparian zone, the growth of a natural plant community is impeded and can extend to the bank vegetative protection zone. Each bank is evaluated separately and the cumulative score (right and left) is used for this parameter.

SelectedPlatts et al. 1983, Hupp and Simon 1986, 1991, Simon and Hupp 1987,ReferencesBall 1982, Osborne et al. 1991, Rankin 1991, Barbour and Stribling 1991,
MacDonald et al. 1991, Armour et al. 1991, Myers and Swanson 1991,
Bauer and Burton 1993.

Habitat		Condition	Category	
Parameter	Optimal	Suboptimal	Marginal	Poor
9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream. (high and low	More than 90% of the streambank surfaces and immediate riparian zones covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
gradient)	allowed to grow naturally.	0 0		
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

9a. **Bank Vegetative Protection—High Gradient**

Optimal Range (arrow pointing to streambank with high level of vegetative cover)

9b.

Poor Range (arrow pointing to streambank with almost no vegetative cover)

Optimal Range

(Peggy Morgan, FL DEP)

Poor Range (MD Save Our Streams) (arrow pointing to channelized streambank with no vegetative cover)

10

RIPARIAN VEGETATIVE ZONE WIDTH

high and low gradient streams

Measures the width of natural vegetation from the edge of the stream bank out through the riparian zone. The vegetative zone serves as a buffer to pollutants entering a stream from runoff, controls erosion, and provides habitat and nutrient input into the stream. A relatively undisturbed riparian zone supports a robust stream system; narrow riparian zones occur when roads, parking lots, fields, lawns, bare soil, rocks, or buildings are near the stream bank. Residential developments, urban centers, golf courses, and rangeland are the common causes of anthropogenic degradation of the riparian zone. Conversely, the presence of "old field" (i.e., a previously developed field not currently in use), paths, and walkways in an otherwise undisturbed riparian zone may be judged to be inconsequential to altering the riparian zone and may be given relatively high scores. For variable size streams, the specified width of a desirable riparian zone may also be variable and may be best determined by some multiple of stream width (e.g., 4 x wetted stream width). Each bank is evaluated separately and the cumulative score (right and left) is used for this parameter.

SelectedBarton et al. 1985, Naiman et al. 1993, Hupp 1992, Gregory et al. 1991,ReferencesPlatts et al. 1983, Rankin 1991, Barbour and Stribling 1991, Bauer and
Burton 1993.

Habitat	Condition Category										
Parameter	Optimal		Suboptimal			Marginal			Poor		
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.		Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.			Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.			Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
(high and low gradient)											
SCORE (LB)	Left Bank	10 9	8	7	6	5	4	3	2	1	0
SCORE (RB)	Right Bank	10 9	8	7	6	5	4	3	2	1	0

10a. Riparian Vegetative Zone Width—High Gradient

Optimal Range (arrow pointing out an undisturbed riparian zone)

Poor Range (arrow pointing out lack of riparian zone)

Optimal Range (arrow emphasizing an undisturbed riparian zone)

Poor Range (MD Save Our Streams) (arrow emphasizing lack of riparian zone)

10b. Riparian Vegetative Zone Width—Low Gradient